skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Venuti, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Classical T Tauri Stars (CTTSs) are highly variable stars that possess gas- and dust-rich disks from which planets form. Much of their variability is driven by mass accretion from the surrounding disk, a process that is still not entirely understood. A multiepoch optical spectral monitoring campaign of four CTTSs (TW Hya, RU Lup, BP Tau, and GM Aur) was conducted along with contemporaneous Hubble Space Telescope (HST) UV spectra and ground-based photometry in an effort to determine accretion characteristics and gauge variability in this sample. Using an accretion flow model, we find that the magnetospheric truncation radius varies between 2.5 and 5Racross all of our observations. There is also significant variability in all emission lines studied, particularly Hα, Hβ, and Hγ. Using previously established relationships between line luminosity and accretion, we find that, on average, most lines reproduce accretion rates consistent with accretion shock modeling of HST spectra to within 0.5 dex. Looking at individual contemporaneous observations, however, these relationships are less accurate, suggesting that variability trends differ from the trends of the population and that these empirical relationships should be used with caution in studies of variability. 
    more » « less
  2. Abstract The Vera C. Rubin Legacy Survey of Space and Time (LSST) holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey’s first light. 
    more » « less